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Abstract:  

Doppler effect. That is the key word. Since its discovery in 1842, this phenomenon has 
revolutionized physics. It has been used to explain multiple theories, from the Big Bang 
theory to the universe expansion and has even been used to improve our quality of life, 
such as the elaboration of radars or the perfection of echocardiographies. Now, Physical 
Engineering ‘s students will use the Doppler effect in order to take the physics out of the 
classrooms and observe directly its effects on the Diavolo, one of the most emblematic 
attractions of the Tibidabo Park, Barcelona’s biggest funfair.  

Using only a microphone, a computer, a horn and a video camera, our main goal is to 
determinate the radius of those flying chairs.  

 

Introduction: 

The idea of this project comes from a proposal made by the Physics Engineering career’s heads. 
We thought about many possible ideas, but the one of this concrete experiment was born thanks 
to a Walter Lewin’s conference at the Cosmo Caixa, about “The Birth and Death of Stars". 
Afterwards, we were definitely convinced that the immense possibilities of the Doppler effect 
during “Physics 2” classes, when we studied this 
phenomenon.  

Our experiment, detailed and explained through this 
document, consists on comparing the radius of the 
Tibidabo’s flying chairs measured using the Doppler effect 
thanks to a registering system connected to a computer and a 
horn situated on one of the chairs with the real radius of the 
attraction, measured manually with a tape measure. In fact, 
we can measure frequency variations of the sonorous 
emission coming from the horn and use them to calculate 
many other parameters relative to the Diavolo. However, we 

will mainly focus on the radius in this paper. 

Measuring the radius of our attraction using the Doppler 
effect is not so far of the techniques and methods employed by astrophysicists to calculate, for 
instance, the orbit’s radius of a star in a binary system or to determinate black holes’ mass 
thanks to the force they make over visible close corps. Effectively, in astrophysics, we don’t 
have tangible tape measures to measure distances and so we must use alternative methods to 
determinate proportions or lengths; one of the most common ones is definitely the Doppler 
effect. 

1: Walter Lewin 



Through this paper, we will first 
present what the Doppler effect is 
and how it allows us, from a 
mathematical point of view, to 
calculate the radius of the flying 
chairs and other physical 
parameters. Then, we will describe 
our experiment, explaining the 
utility of each instrument we used 
but also showing its limitations. 
After that, we will expose the 
results we obtained and discuss the 
possible errors in our calculations. 
Finally, after concluding, we will 
think about other possible options we could develop directly related with the Diavolo’s 
experiment and we will see in what measure nowadays astrophysics is similar to what we are 
doing…  

 

2 Theory: 

Our understanding of the Doppler Effect is our main tool when it comes to the analysis of the 
data obtained in the experimental procedure. That is the reason why it is necessary to explain 
what this effect is and how we use it in our analysis. The Doppler Effect explains how the 
relative speed between the source and the receptor results in a modification in the wavelength of 
the wave the receptor gets. In fact, either when the former approaches the latter or vice versa the 
wavelength of the wave received becomes shorter. On the contrary, when these two elements 
move away from each other; the wavelength measured by the receptor is larger than the emitted 
one. Once we know what the Doppler Effect is, we shall see how to calculate the frequency 
resulting from the application of this effect. This frequency is modelled by the following 
formula when it comes to sound waves (or other waves with a relatively low speed): 
 

∗
∓

 

 
 Where: 

1. f* is the frequency received by the receptor. 
2. f is the frequency emitted by the source. 
3. vs is the speed of sound (constant). 
4. vf is the speed of the source. 
5. vr is the speed of the receptor 

 
 We shall remark, though, that this formula was made according to classical physics 
laws, since we are measuring the frequency of the sound waves and the speeds shown are not 
high enough for us to take into account the relativity effects that could appear. Now we'll 
proceed to the demonstration of that formula: 
 
Demonstration: First of all, it’s well known that the wave frequency can be calculated by 
means of this formula: 

 

v being the wave’s speed and λ its wavelength. From this point, if we take into consideration a 
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situation where there is a source of sound waves and a receptor in relative movement, we can 
reinterpret this equation as: 

∗
∗

∗  

 Where: 
1.  f* is the frequency received by the receptor. 
2. v* is the wave’s speed from the receptor’s point of view. 
3. λ* is the wavelength received by the receptor. 

 
Each pulse emitted by the source is given at a set time interval, but in different places. 
Therefore, the distance between each pulse is: 
 

∗ ∗ ∓ ∗ ∓ ; (T is the period of the wave) 

	
depending on whether they approach or get away from each other. This distance between each 
pulse is equivalent to the wavelength λ* got by the receptor.  
 When it comes to v*, it represents the speed at which the receptor gets the sound wave. 
As the speeds treated here are really low compared to that of the light, we can neglect 
relativistic effects and apply the addition of velocities. Altogether the speed of the sound wave 
received by the receptor is: 

∗ 	 	  
 
 In conclusion, when we substitute these last two terms, the resulting expression is: 
 

∗
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depending on whether the source and/or receptor approach each other or move away. 

 
Formulae 

Values we know 

    average, minimum and maximum frequencies 

 														 					  the times at which those frequencies are obtained 

 T: period of rotation 
    average, minimum and maximum frequencies 

 														 					  the times at which those frequencies are obtained 

 “Differences” from the perfect sinusoidal form of the frequency graph, the reason being 
that the extremes of the function aren’t at opposite angles. 

     

  : the velocity of sound through air (constant) 
 The fact that ≪ ,  and thus we can make the assumption that ~0 

o H: height of the plain of rotation, R: radius of the rotation, d: distance to the 
center of rotation 

Basic formulas known 

1.  



2. , v being the linear velocity and  the angular velocity 

3. ∙ , the velocity of the horn that goes directly to the receiver 

4. ′ 	 , which comes from the Doppler formula knowing that the receptor is still. 

5. ∝  

6.  

7. 	 	  

Basic formulas deduced 

8. 	
| |

 , 	
| |

  obtained directly from (4) 

9. | | , working with equations in (8) 

10. , making (2)=(9) and solving for R 

11. If ~0 and d>R, √ ; using(5) 

12. 	 	 ; obtained making (6)+(7)=0 

More complicated formulas deduced 

13. General | ∙ | 	
| |

sin  

14. If	 ~0,  | ∙ | 				
| |

				 sin  

 

3. Experiment description: 

A few days before taking any experiment, we visited the Tibidabo Park to familiarize 
ourselves with the attraction of Diavolo. 

 

We noticed that the chairs rise 
several meters before starting to turn, and a 
couple more when turning, due to the 
centrifugal force produced by circular 
motion. Therefore, it is important to find a 
place to put the microphone, which collects 
measurements, on the same rotation plane 
of the attraction. Once we found the right 
place to put us and the equipment, we found 
a problem: the attraction makes small 
oscillations in the plane of rotation of the 
chairs that move them up and down, that 
cannot be eliminated, but we will consider 
them negligible. 

3: Screen capture 



 

The day of the experiment, the first thing we do is using a tape to measure the maximum radius 
of the Diavolo’s outer seats when in operation. Meanwhile we install the computer and the 
microphone, with which all the data will be collected, on the proper site.  

 

One member of the team goes to one of the outer chairs of the attraction with a horn 
gas, and helmets for the ears. When the chairs have gone around a few times and have reached 
their maximum height, this member blows the horn for about 6 laps. In this first proof he tries to 
aim, as far as possible, at the microphone. The most satisfying is to see at the computer how 
measurements vary periodically with every turn of the attraction (look at the picture 3). 
However, it appears a new problem. When the horn is sounding continuously for several 
seconds, the metallic container containing the gas cools so much until freezing moisture around 
it. From now on, the member on the attraction will get on insulating gloves for safety reasons. 
The reason for this is that the horn works with compressed gas at high pressure in a liquid state, 
and makes it sound due to this gas expands causing the noise. This change is an expansion of 
state (liquid to gas) against a constant pressure (atmospheric pressure) and it is a highly 
endothermic process that requires energy from the environment. This phenomenon also brings 
changes in our measures. After observing the data for all measures it seems that the frequency 
of the horn varies linearly when it is being used continuously. It is a very light gradual change 
and we will correct it afterwards. 

 

For the next test we introduce a change. The fact of trying to point the microphone 
always involved some changes in the intensity of the received sound. Although the frequency 
measurements do not seem affected by this (note that the frequency is independent of intensity) 
in the next round the horn will be still always pointing outwards.  

 

The first thing we notice is that the Doppler Effect can be perceived very clearly, even 
more than in the first test. Measurement of frequency seems to be good, the sinusoidal periodic 
variation also appears but at first glance do not seem as precise as in the first test. 

 

For the third test our idea was pointing the horn up. By this, the angle between the 
direction of emission of the horn and the imaginary line that connects it with the microphone is 
constant (always ninety degrees). The problem is that this type of horn only works properly in 
vertical position, because horizontally it cannot expel the gas properly. So we decided to make a 
last test like the previous one, pointing always outwards of the attraction. 
 

Once all the data and measurements are collected, we have to interpret all the 
information we have to try to calculate the radius of the Diavolo attraction and everything 
possible. 

4. Results: 



The following graphics show the data collected along our experiment in terms of frequency and 
intensity: 

First measure 

 

Second measure 

 

 

 



Third measure 

 

 

 In these three images there is clearly a sinusoidal behaviour of the frequency along the 
time elapsed. Apart from this behaviour, we can see how the average frequency increases and 
diminishes regularly. This phenomenon is due to the fact that we are using our horn for a long 
time, which makes the characteristics of the sound emitted change. In order to correct the 
disruption on our measures created by the horn’s behaviour, we attempt to do a lineal regression 
of all the measures recollected in every experiment (we assume that the variation of the average 
frequency along the time elapsed); this regression is represented by the red line shown in the 
graphics. In addition, as we can observe in the first and third measure, we only take frequency 
values the first 35 seconds of each experiment due to the fact that the values noted from that 
point are no longer reliable. The corrected graphical representations of our experimental 
measures in the reliable elapse of time exposed before are the following: 

 1st measurement

 



2nd measurement 

 

3rd measurement 

 

Once the necessary corrections were done, we decide to work with the most reliable and regular 
data: the measures taken in the first and third experiments. 

Firstly, though we had already measured it manually with a chronometer, we want to calculate 
the period of the flying chairs by means of the graphics we have obtained from the experimental 
measures too. In order to do this, we take the time between each consecutive local maximum 
and local minimum and multiply it by two. Then, we make. the arithmetic mean among all the 
obtained values and calculate the standard deviation as the error measurement: 

Period  =  5,3 ± 0’35 seconds 

From now on, we treat the information from each measure apart from the others. Firstly, we 
make list of the frequency maximum values in order to do the arithmetic mean. Next, we follow 
a similar procedure with the frequency minimum values. When it comes to the first 
measurement, we attempt to eliminate those maximum and minimum values which show an 
irregular behaviour, because of external issues, when compared to the rest of the data. The new 
value of the standard deviation which will be taken as the error measurement is: 

 Maximum Frequency Minimum Frequency 

Measure 1 439,4±  2,1 413,2 ±  2,05 

Measure 3 452,2±  6,16 425,2 ±1,4 

 



Then, these values will allow us to apply the formula (9) assumed from the Doppler Effect in 
order to calculate the rotation lineal velocity of the attraction. However, we will attempt to 
calculate directly the horn’s velocity  (source of sound waves) at each moment by means of the 
Doppler Effect formula (4): 
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 The physical interpretation of the calculated velocity is that at which the sound source (the 
horn) approaches the receptor. Therefore the negative velocities represent whenever the horn 
gets further from the microphone. The respective graphical representations to each measurement 
are: 

First 

 

Third 

 

 

Even though we have this huge amount of data about the source’s velocity, we only care about 
its maximum and minimum values. The reason behind this fact is that we need the lineal 
velocity of the flying chairs so as to calculate the radius of the flying chairs. The maximum and 
minimum values shown in the graphical representation represent the moment when the chair’s 
lineal velocity vector, tangent to their circular trajectory, points directly to the microphone. 



Generally, the velocity calculated in the previous graphics (v) from the frequency represents: 

cos( )sourcev v    

Where:  

1. α = angle between the lineal velocity and the imaginary line that goes 
from the horn to the microphone. 

2. vsource = the chairs’ lineal velocity. 

Taking account of the facts exposed before, it is clear that the points  which we are interested in 
are those where a = 0º, 180º.  

Now that we know the reason why we only need the maximum and minimum values from the 
graphics, we can use these to apply the expression (9) with the frequency values calculated 
previously:  

| |  

 First measurement (m/s) Third Measurement (m/s) 

Speed 10,45 10,46 

 

Afterwards, we calculate the error in the velocity value obtained by means of the maximum and 
minimum frequencies’ errors according to the following expression: 
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According to which values Δfmax and Δfmin  we consider (always from the standard deviation σ) 
we obtain the following error values: 

 

 First Measurement (m/s) Third Measurement (m/s) 

1σ 1,17 2,38 

0,5σ 0,59 1,19 

2σ 2,34 4,76 

0,33σ 0,39 0,79 

 



 From all the results in the last table, we will assume our error measure is that of 1σ. 
Altogether our results are: 

 First Measurement (m/s) Third Measurement (m/s) 

Velocity 10,45±1,17 10,46±2,38 

 

Finally, as we already have the value of the linear velocity of the flying chairs, the only thing 
left to do is to apply the relation (3) and isolate the radius:: 
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The results obtained are the following: 

 First Measurement (m) Third Measurement (m) 

Radius 8,82 8,81 

 

In this case, the radius’ error is given by the expression: 
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Again, according to which value of the standard deviation we take for each interfering 
parameter, we will obtain the following error values for the radius: 

 First Measurement (m) Third Measurement (m) 

1σ 1,15 2,09 

0,5σ 0,57 1,05 

2σ 2,30 4,18 

0,33σ 0,38 0,69 

 

Therefore, the final values we get of the Diavolo’s radius are: 

 First Measurement (m) Third Measurement (m) 

Radius 8,82 ± 1,15 8,81 ± 2,09 

 



Finally, the last thing to do is to compare these two values with the one we obtained manually 
with the tape measure that is: 

9,5 ± 0,3 m 

Seeing this comparison, we can conclude that both the experiment and the calculations derived 
from it were a real success! 

 

5. Conclusions 
 

To sum up, this experiment was really productive and enriching for all of us. It permitted us to 
have a different approach of science and research and also allowed us to obtain gratifying 
results. We have been able to determinate the Diavolo’s radius by two different ways: one 
elemental using a tape measure and the other one calculating it by observing and measuring 
frequency variations of a horn emitting an approximately continuous sound. 

However, many other magnitudes related with the Diavolo can be calculated as we can see 
below. 

In spite of the material’s limitations we had to overcome and the problems we had to face, this 
experiment really shows that the Doppler effect has many other possible applications, not only 
at a macroscopic scale but also at an astronomic scale. The traditional graduated tape measures 
loses its usefulness for big distances but the astrophysics continues progressing without limits, 
allowing us to measure every day more and more things, with more precision and more 
precision.    

 

6. Amplification 

Ideas going much further/ theoretical ideas 

1. Using the fact that the graph for the frequency is not a perfect sine we can 
determine the distance to the attraction if we suppose ~0 . This is done by 
substituting for all known values in (14) and binary searching h comparing it with 
the experimental graph. 

2. From the frequency we can obtain ∙  at each instant. This, as (13) shows, 
only leaves 2 candidates for θ which can be reduced to 1 knowing the intensity (or 

alternatively knowing ). Once d and R are known, we can parameterize the 

circular trajectory and thus obtaining the position of the horn in a 2-D space at each 
instant. 

3. Combining the equations (11) and (14), i.e. both the intensity and the frequency, we 
could try to obtain all h, d, R. Alternatively we could use equation (11) and the 

graph of . 

4. Using the previous idea the same of idea 1 could be done just by adding the height 
and thus obtaining a 3-D position at each instant. 



5. Another way of obtaining a 3-D position without making the assumption that we 
have a circular trajectory (and that it could be an elliptical one) could be to take 
different measurements from different places. This could be a small analogy of 
trying to obtain the position of a satellite. 

6. Reverse engineer the process and trying to obtain the position of an emitter on the 
surface by taking simultaneous measures from different chairs. This could be an 
analogy of the GPS system. 

Viable continuations for the experiment 

1. Using the drop in the intensity graph, knowing d and using basic trigonometry we 
can approximate the radius of the pivot in the centre of the attraction 

2. Supposing ~0 calculating d from R using (11) 
3. Calculating h from the change in intensity while the chairs are going up. 
4. Calculating the mass of the hypothetical dark hole using (12) 
5. Trying to parameterize the secondary rotation of the attraction and trying to account 

for it. 
6. Showing that the relativistic effect is negligible. 

7.  Relation with Astrophysics 
 

Although this project may not seem much interesting at first sight, it really is. Actually, 
the procedures shown in this paper hold similarities with those applied in astrophysics. 
However, this time we are dealing with light waves instead of sound waves, which means we 
are required to take into account the relativity effects that appear at high speeds near the speed 
of light. Even though we are not going to show or explain how to get the Doppler effect 
formulas used in these circumstances (as it is not the goal of this section), the appearance of 
relativity effects is an important detail to keep in mind. The main applications in astrophysics 
related with the procedures and analysis shown in this paper are: 

1. The tracking of Binary Systems and the calculation of its period and frequency of 
rotation. 

 By analyzing the wavelength of a star, we can determine if it is moving away or 
approaching us. Consequently, whenever a certain pattern in the changes of wavelength of the 
light rays within a certain period is registered, there is a possibility that the star we are studying 
might be rotating around another star. In this case, we would have found a binary system and 
the Doppler effect would make possible not only finding it but determining the mass of both 
stars among other characteristics of the system such as the period and frequency of rotation. 

2. The tracking and calculation Black Holes’ mass. 

 The procedure followed is exactly the same as the one explained before when 
we explained the application of the Doppler Effect in binary systems. However, the analysis of 
data this time is much easier this time as the black hole has all its mass centered in a single point 
of space. This means that the star trajectory will be more circular and that we will be able to use 
the formula of the normal acceleration to calculate the Black Hole’s mass.  

3. Determining whether galaxies are moving away or approaching us and, in consequence, 
determining whether the universe is expanding or shrinking. 


